
Benchmarking Web Server Architectures: A Simulation Study on Micro
Performance

Haiyong Xie, Laxmi Bhuyan, and Yeim-Kuan Chang
Department of Computer Science & Engineering

University of California, Riverside
Riverside, CA 92521

yong@cs.ucr.edu

Abstract
As Internet expands, the number of application servers,
especially Web servers, has been increasing exponentially.
To improve the performance of Web servers, researchers
have paid attention to and studied the Web server’s
macro-performance, namely, the response time and
throughput, which can be perceived by end users directly.
In this paper, we have produced a micro benchmark,
ServBench, by studying the micro performance of the most
widely used Apache Web server. The bottleneck functions
are identified by profiling the Apache server running with
a realistic workload. We select some of these functions as
micro-benchmark programs and study their
characteristics. We port the microbenchmark to
SimpleScalar simulation environment. We obtain
execution time, branch prediction and cache miss results
for the microbenchmark as a function of various
architectural parameters.

1. Introduction

Recent years have seen an explosive growth of the
Internet. Web applications and Web servers are critical to
the success of the Internet. To improve the performance of
Web servers, researchers have studied the Web server’s
macro-performance, namely, the response time and
throughput, which can be perceived by end users directly.
These studies have led to many benchmarks such as
SPECweb [24], WebStone [26], NetPerf [20], and
WebBench[27]. However, most of the macro-performance
bottlenecks such as protocol stack overhead and process
management overhead actually stems from the operating
systems. Other studies show that web servers spend about
85% of the cycles in executing operating system codes
compared to only 9% by SPEC95 suite [25]. Hu et al [14]
found that Apache spends only 20-25% of the total CPU
time on user code. This means Apache spends most of the
CPU time in the kernel of operating system.

A number of performance evaluation studies on web
servers have been reported in the literature. Most of these
studies characterize external performance of web servers,
namely, how the web server interacts with the outside
world, which is called macro-performance in this paper.
The workloads either consist of mainly static web page
accesses or many static web page access blended with a
small percentage of CGI scripts that perform very simple
computation functions. A number of performance
evaluation methodologies have been suggested in the
literature [11,13,16,17].

The studies on improving Web server’s macro-
performance focus on improvement of either the
interactivity between the Web servers, the underlying
operating systems, or disk I/O and network I/O. The
studies in this field generally fall into three categories:
operating system enhancement [2,6,7,8], server program
improvement [1,5], and caching techniques [12,15].

A very limited number of studies focus on
architectural performance of Web servers, which we call
micro performance in this paper. Radhakrishnan and John
[23] evaluated the performance of Apache Web server in
terms of micro-architecture using hardware performance
monitoring counters. They studied such architectural
performance as CPI and cache miss rates for both static
and dynamic workloads. Iyer studied the cache
performance of single and dual-processor servers running
SPECWeb99 benchmark by feeding traces through
simulation models of CacheFlowII [16]. The micro
performance is very important for us to fully understand
the impact of micro-architecture on the Web servers.

Another motivation, which is more important, is that
we believe macro-performance improvement has its
physical limitations like input/output processing and that
we cannot exceed these limitations. Flash Web server [21]
is claimed to be the fastest Web server and it outperforms
existing Web servers by up to 50%. There is still much
room to improve the Web server’s micro performance



which can lead to better macro-performance. In order to
understand how to improve the micro performance, we
need to explicitly study the behavior of frequently used
functions that contribute greatly to the execution time. A
far out research will then be to develop assembly language
instructions (like Intel MMX) for these functions or to
build specialized hardware units on the CPU for fast
execution of these functions.

To better understand the micro performance of web
servers, we build an experimental environment for
measuring the internal performance of a common modern
Web server, Apache [2]. We take advantage of gprof [11],
which is a program of GNU suite Unix tools [12], to get
detailed profiling information of the Apache server.
Through profiling the web server program, we are able to
evaluate the performance of the web server in terms of its
function calls. We identify the most time-consuming
functions and the most frequently called functions. These
functions are the bottlenecks to the server’s micro
performance and comprise the kernel of the web server.

Having known how much time these functions spend
and how frequently they are called, we extract the top 8
function calls from the Apache server program and use
them as the micro benchmark, ServBench. To make these
programs run in a real system, we also extract their
corresponding data structures together with the functions.
All the benchmark programs need workload to operate on.
We add some workload builder functions to the server
program. When Apache serves incoming requests, the
workload builder automatically generates the workload for
benchmark programs based on the actual processing of the
requests.

To know better the characteristics of the benchmark
programs, we port and run the programs in the simulator,
SimpleScalar [8]. As far as we know, ours is the first
attempt to port a Web server benchmark program to an
execution-driven simulator. By means of simulation, we
obtain the characteristics such as instruction level
parallelism, instruction frequencies, and cache
performance for the micro-benchmark as a function of
various architecture parameters. These characteristics are
of great help to the design of high performance Web
servers and Web-server-specific network processors.

We find that the average code size of ServBench is an
order of magnitude smaller than that of SPECint. Both
have similar instruction set characteristics. However,
ServBench has smaller basic-block sizes and nearly half
of the branches are taken and half not taken. This fact
makes better branch predication mechanism and lower
miss rate very important to the performance. We find that
the Apache Web server can benefit tremendously from
instruction level parallelism (ILP) because of the inherent
parallelism of the ServBench programs. Also, L1
instruction cache plays a more important role than data
cache in increasing the number of instructions executed
per cycle (IPC). IPC is not sensitive to the set-

associativity of instruction cache. We are able to achieve
higher IPC by using asymmetric L1 cache, by enlarging
the length of instruction fetch queue and by adding more
ALUs. However, 4 ALUs and an instruction fetch queue
of length 8 are enough to enhance the micro performance.

The rest of this paper is structured as follows. Section
2 describes profiling information of the measurement and
how we achieve the ServBench. This section also gives a
brief description of the experimental setup, how the web
server services the requests and how we measure the
architectural and functional performance using httperf [18]
and GNU profile tools [12]. Section 3 presents the
ServBench based on the profiling data in Section 2.
Section 4 presents characteristics of benchmark programs
including the instruction level parallelism, instruction
frequencies, and cache performance. Section 5 concludes
our work and suggests some future work.

2. Micro performance Measurement and
Profiling

2.1 Experimental Setup

To measure and profile Apache Web server in the
level of function calls, we have established an
experimental environment which is comprised of a Linux
server running Apache Web server, and several clients
running the Web server benchmarking tool, httperf. The
server and clients are connected to each other by a
dedicated Ethernet using a 100Mbps Ethernet switch. This
ensures that both the server and clients have access to
enough network bandwidth available thus both have
feasible high throughput and low response time. We have
carefully chosen the benchmarking parameters for httperf
including the request rate, number of requests, and
number of connections so that the server reaches its
possible highest throughput with the lowest load.

To get detailed profiling information, the Apache Web
server is compiled by gcc 2.91 with function profiling
option and optimization level O2. We use O2 level
optimization for the reason that the compiler only
performs target-processor independent optimizations and
does not exploit particular architectural features such as
loop unrolling for superscalar architectures.

The simulated processor architecture in SimpleScalar
tool set is a close derivative of MIPS architecture. In all
the simulations, the default issue width is 4; the default L1
caches are 4-way set-associative 16KB separate
instruction cache and data cache; the line size of L1 cache
is 32 bytes; the L2 cache is a 4-way set-associative 512KB
unified cache with line size of 64 bytes; and the simulator
is configured as out-of-order execution.

In addition to setting up the experimental network,
server and clients, we also build the realistic workload for



the server according to SPECweb99 [24]. The workload
consists of static files of four classes as shown in Table 1.

Classes File Sizes Target Mix
Class 0 less than 1K 35%
Class 1 less than 10K 50%
Class 2 less than 100K 14%
Class 3 less than 1000K 1%

Table 1. File size mix of workload

We did not measure the performance with blended
workloads which consist of both static and dynamic
requests for a simple reason: our goal is to characterize the
micro performance of the underlying processor and the
internal performance of the server program. To study the
micro and internal performance, we only need some
simple but typical workloads which can be used to make
the blended workloads. Dynamic requests always lead to
the execution of some external programs such as Java or
Perl CGI programs other than the Web server. The micro
performance of those programs executed dynamically is
not what we focus on.

2.2 Profiling Results

The clients in the experimental environment run
httperf simultaneously to request a particular file class
from the server. Apache Web server compiled with
profiling options services the requests and writes the
function profiling information to a specific binary output
file. Later, the binary file can be converted to plain text
file containing detailed profiling information using gprof.
We collect all the function profiling information from the
converted text file. We only pay attention to those
functions that involve no disk I/O or network I/O
activities directly since we focus on profiling the micro
performance of Apache Web server.

After having collected profiling information for all the
non-I/O functions, we rank the functions according to the
percentage of execution time they account for. The top 15
most time-consuming functions account for almost 60%
of execution time when the server services the HTTP
requests, as shown in Figure 1.

Top 15 Function Calls

0

5

10

15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Pe
rc

en
ta

ge
of

E
xe

cu
ti

on
T

im
e

%
Function Name % Function Name %

1format_converter 12 9check_hostalias 3
2pstrdup 6 10getword_white 3
3run_method 5 11process_item 2
4config_log_transaction 5 12conv_10 2
5pstrcat 5 13no2slash 2
6palloc 4 14getparents 2
7table_get 4 15get_module_config 2
8invoke_handler 3

Figure 1. Top 15 function calls

To our surprise, most of these functions are string
processing related functions. Only a small part of these
functions deal with the HTTP requests directly. This is
feasible because HTTP protocol is a text-based protocol
and the processing of HTTP protocol is essentially
processing of strings. Some of these functions are sub-
functions of others, for instance, process_item and
conv_10 are sub-functions of config_log_transaction and
format_converter, respectively.

3. ServBench

3.1 Selection of Benchmark Programs

Most of the functions in Figure 1 have supporting sub-
functions, for example, format_converter always calls
conv_10 to convert integer numbers and conv_fp to
convert floating-point numbers. Thus, we create fmt by
combining the main function, format_converter, with such
supporting functions as conv_10.

Some of the top 15 functions are just interfaces to a
group of functions, for example, run_method and
invoke_handler are called to invoke other functions
indirectly using function pointers, which can not be
identified by gprof. We do not consider these functions
because they spend very little time in invoking other
functions.

After having combined sub-functions with main
functions and deleted interface functions such as
run_method, we obtain eight sets of programs that are
most time-consuming, fmt, pitem, pal, pdup, pcat, gwd,
gwdw, and tget, as shown in Figure 2.1. These programs
are ranked according to the percentage of execution time
they spend. They account for 40% of total execution time
(without considering disk and network I/O time). In this
paper, we take these sets of programs as single functions
for clarity.

These eight programs have different frequencies as
shown in Figure 2.2. String allocation (pal) and
duplication (pdup) functions are called 100 and 36 times
respectively during Apache processes an incoming request.
However, other functions such as fmt account for more
execution time compared to pal although they are called
less frequently. The reason is that fmt is about an order of



magnitude larger than pal and pdup in the size of source
code and runtime kernel, as we will see in Section 5.2.

Percentage of Execution Time

0

5

10

15

20

f mt pi t em pal pdup pcat gwd gwdw t get

P
er

ce
nt

ag
e 

%

(1) Percentage of execution time

Frequencies of Function Calls

0

20

40

60

80

100

120

fmt pitem pal pdup pcat gwd gwdw tget

C
al

ls
 p

er
 R

eq
ue

st

(2) Call frequencies
Figure 2. Benchmark programs: percentage of

execution time and call frequencies

We build the micro-benchmark, ServBench, based on
the above eight programs. There are several reasons for
which we choose them as the benchmark programs. First,
They are the most time-consuming elements of Apache
server. If we want to improve the micro performance of
Apache server, we will have to improve the performance
of these functions because they are the bottleneck
functions. Secondly, they are very frequently called when
Apache processes the requests. Thirdly, benchmark
programs should represent a wider application class in the
domain of interest. The above functions are general
functions to process the HTTP requests. Since HTTP
protocol is basically a text-based protocol, all the request
lines and header lines in the protocol payload are texts; to
generate the response headers and log the requests are
text-based as well. We believe every implementation of
Web servers needs to process the text-based request lines
and header lines very frequently. These string processing
functions are representatives of HTTP protocol processing
applications.

These programs can be divided into three groups.
Group 1 has fmt and pitem as string format conversion
programs; group 2 has pal, pdup, and pcat as string
generation programs; group 3 consists of gwd, gwdw, and
tget as string comparison programs.

3.2 String Format Conversion

String format conversion functions represent the
operations of converting a number of values to a string.
These functions are called to generate a response header
or to log the corresponding request. String format
conversion functions include fmt and pitem. Fmt is used
to convert all other types of data to a string, e.g.,
converting an integer to its corresponding printable string,
converting the request time to a string, and generating
weak Etags for response headers. Pitem is used to
generate the log entries for each of the incoming requests,
for example, request line, request time, client address, and
status of responses, etc.

3.3 String Generation

String generation functions, which include allocating a
memory block for a new string, duplicating a string, and
concatenating a number of strings, are very frequently
called during the process of incoming HTTP requests. As
mentioned before, HTTP protocol payload is text-based
strings. To manipulate the payload, the content of payload
which is comprised of many strings, has to be duplicated
and stored in user space buffers. For instance, Web
servers have to keep the state of a request in memory
which may consist of the request string and some of the
header strings. Web servers also need to log the requests
which requires keeping some of the request strings in
memory. These functions are also used in generating
response headers.

String generation functions include pal, a string
allocation function, pdup, a string duplication function,
and pcat, a string concatenation function.

3.4 String Comparison

String comparison functions are very often called as
well. These functions are used to extract a part from a
long string which consists of many sub-strings separated
by delimit characters such as blank space or colon. Tget,
gwd, and gwdw are the three programs in this category.
Gwd and gwdw are called to extract a “word” from a
string which comprises many words separated by blank
spaces or other predefined delimit characters. Tget is used
to retrieve the corresponding value of headers from the
HTTP requests. Since each request may have many
headers, which again consists of may key strings and their
corresponding value strings, tget is called to get the value
string for a specific key string.

4. Benchmark Characteristics

We have selected the following general areas of
characterization for further consideration: program code



sizes and kernel sizes, instruction set characteristics,
instruction level parallelism, and cache performance.

4.1 Methodology

We use SimpleScalar to study the characteristics of
these benchmark programs. SimpleScalar is an execution-
driven simulator package commonly used by computer
architecture researchers. SimpleScalar has its own C
compiler (a modified version of GNU GCC) with
associated utilities. We run the programs in the simulator
and get the detailed performance data by changing the
architectural parameters such as cache size, number of
ALUs, etc.

All the programs have to have some data to deal with.
To generate datasets for them, we insert some small
functions into Apache server to gather all the data needed
by each benchmark program. By doing so we are able to
get the data that is dealt with by Apache derived from the
realistic workloads, which is meaningful to characterizing
the benchmark. This method has a potential valuable
property: we are able to update the associated data for
each benchmark programs very easily as the workload
changes.

4.2 Program Kernel Size

Knowing the sizes of program kernels is useful for us
to learn the static properties such as the number of lines of
C code and size of compiled code, and dynamic properties
such as instructions executed at least once and instructions
accounting for 99% of execution time. We compare
ServBench programs to SPECint programs as well.

Table 2 shows the size of the C source code and
compiled executable of each benchmark program in both
ServBench and SPECint. The object code size does not
include dynamically linked libraries.

The average code size of ServBench programs is
28,679 bytes which is nearly an order of magnitude
smaller than that of SPECint programs. The differences in
code sizes of ServBench and SPECint programs come
from the different environments where the applications or
functions have been implemented and executed. String
generation functions such as pal, pdup, and pcat are the
most frequently referenced functions in Apache; they have
rather simple functionalities compared to other function
calls and applications. Other programs such as string
format conversion and comparison functions are larger in
code sizes in average. However, the SPECint programs
are actual applications in real systems. They all have
much more complex functionalities thus have much larger
object code sizes.

ServBench Code Size
(C Lines)

Code
Size

SPECint Code Size
(C Lines)

Code Size

Fmt 3,206 76732 126.gcc 206,000 1950000
Pitem 1396 20040 130.li 7,600 139000
Pal 326 9644 099.go 29,200 558000
Pdup 320 9628 134.perl 26,900 544000
Pcat 327 9992 124.m88ksim 19,900 404000
Gwd 427 75876 147.vortex 67,200 1150000
Gwdw 424 19560 132.ijpeg 31,200 594000
Tget 174 7960 129.compress 19,300 81700
Average 825 28679 Average 48700 678000

Table 2. Code sizes of ServBench and SPECint

ServBench Instructions
at Least once

Instructions
For 99%

SPECint Instructions
at Least once

Instructions
For 99%

Fmt 18400 1112 126.gcc 124246 15899
Pitem 1767 206 130.li 7341 408
Pal 660 198 099.go 12627 949
Pdup 657 226 134.perl 12313 875
Pcat 713 269 124.m88ksim 12284 542
Gwd 992 293 147.vortex 60630 1715
Gwdw 990 324 132.ijpeg 53629 6530
Tget 384 57 129.compress 2842 227
Average 3070 335 Average 35700 3390

Table 3. Dynamical Properties of ServBench and SPECint programs



The dynamical kernel size of ServBench is an order of
magnitude smaller than SPECint as well, as shown in
Table 3. A common rule, “90/10 rule”, can be seen from
the table in average: 90% of executed instructions are
derived from 10% of the instructions in the program. Most
of the programs have a relatively small kernel that account
for most of the execution time.

4.3 Instruction Set Characteristics

The instruction mix gives indications on the types of
instructions executed in the benchmark. Figure 3 presents
the frequencies of different types of instructions for each
ServBench program (instruction types are noted in the
figure). Averages for each of the three groups of
benchmarks, ServBench, and SPECint are also given in
Figure 4.

These two benchmarks have similar instruction set
characteristics in terms of the general trend and variability.
The average difference in frequencies between ServBench
and SPECint is between 5% (13% store instructions in
ServBench while 9% in SPECint) and 1% (42% integer
computation instructions in ServBench versus 43% in
SPECint).

Instruction Mix Characteristics

0%

20%

40%

60%

80%

100%

fmt pitem pal pdup pcat gwd gwdw tget

ld st ub cb int

Figure 3. Instruction mix characteristics (ld=load,
st=store, ub=unconditional branch, cb=conditional
branch, int=integer computation. No floating-point

instructions)

There are significant differences between the three
groups of benchmarks, Apache, and SPECint that can be
seen in from Figure 4.

The three groups of sub-benchmarks have different
instruction execution frequencies. For instance, G1 has
8% percent less load instruction than G2 and 4% less than
G3, however, it has 8% percent more integer computation
instructions than G2 and 5% more than G3. But all these
three groups have very similar percentage of store
instructions. Among the three groups, string comparison
functions have similar trend and variance to SPECint. The
difference is under 3% (12% store instructions in group 3
compared to 9% in SPECint). Other groups have much
significant and variable differences ranging from 1% to
6% in each instruction type.

Average Instruction Mix Per Group

0%
20%
40%
60%
80%

100%

G1 G2 G3

Pe
rc

en
ta

ge
%

ld st ub cb int

Figure 4. Average instruction mix (G1=string format
conversion, G2=string generation, G3=string

comparison)

4.4 Instruction Set Characteristics

Instruction level parallelism (ILP) is an important
issue in improving a Web server’s micro performance.
Knowing the benchmarks’ instruction level parallelism
can be of great help to the design of application specific
processors and architectures such as network processors.

We obtain the instruction level parallelism for each
benchmark program by changing such parameters as the
length of instruction fetch queue, the number of ALUs,
and branch prediction mechanism. All these parameters
have important impact.

Execution Time of Benchmark Programs

0

10

20

30

40

1 2 4 8

M
ill

io
ns

ILP

E
xe

cu
tio

n
T

im
e

fmt

pitem

pal

pdup

pcat

gwd

gwdw

tget

Average Execution Time

0

5

10

15

20

1 2 4 8

M
ill
io
n
s

I LP

E
xe

cu
tio

n 
T

im
e

G1 G2 G3 AVG

Figure 5. Execution time of benchmark programs Figure 6. Avg. execution time of benchmark programs



Figure 5 shows the relationship between execution
time and ILP for each benchmark program. Figure 6
depicts the average execution time of each group of
functions. It is observed that it is almost enough for us to
achieve the best performance when ILP is 4.

Figure 7.1 and 7.2 depict the impact of instruction
fetch queue and ALU respectively.

With 8 ALUs and decode/issue bandwidth of 8
instructions per cycle, the highest instruction per cycle
(IPC), which is 2.1, can be reached when instruction fetch
queue is 8. Increasing the length of the queue is of no help
to enhance the performance. An instruction fetch queue of
length 8 is enough to achieve best performance in this
case. On the other hand, 4 ALUs are enough for achieving
best performance if the instruction fetch queue is 16 and
decode/issue bandwidth is 8. Increasing the number of
ALU does not help to improve the performance in terms
of IPC.

From the above observations, we see that 4 ALUs and
instruction fetch queue of length 8, or an ILP of 4, are
enough for best performance. However, there are intrinsic
reasons for this.

Impact of IFQ

0

0.5

1

1.5

2

2.5

2 4 8 16
IFQ Size

IP
C

fmt gwd gwdw

pal pdup tget

pcat pitem

(1) Impact of instruction fetch queue

Impact of ALU

0

0. 5

1

1. 5

2

2. 5

1 2 4 8
Number of ALUs

IP
C

f mt gwd

gwdw pal
pdup t get

pcat pi t em

(2) Impact of ALU
Figure 7. Impact of instruction fetch queue and ALU

Figure 8 shows the size of basic blocks of each
benchmark program and group. Most of the programs’
basic block sizes are less than 5 except pal which has the
size of 8. The three groups of programs have average size

of 5, 6, and 4.6 respectively. This means every 5 or 6
instructions in the instruction queue must have a branch
which is taken with a probability of nearly 50%, as shown
in Figure 9. Thus an instruction queue of length 8 has an
effective length of 4 due to half of the branches are taken
and the other half not taken. 4 ALUs are enough for best
performance for two reasons. One reason is that the
effective length of the instruction queue is only 4 which
means there are at most 4 instructions decoded and issued
to the ALUs. The other reason is that only 40%
instructions are integer computation instructions and that
the maximum decode/issue bandwidth is 8 instructions per
cycle, which means less than 4 instructions per cycle are
in need of ALU operations.

The miss rate of branch prediction mechanism has
much greater impact on IPC than expected. Both predict-
not-taken and predict-taken have nearly the same high
miss rate as shown in Figure 9.1. The bimod, 2lev and
combined techniques predict with an accuracy between
80% to 100% for different benchmarks. From Figure 9.2
we can see that IPC reaches more than 2 for most of the
programs with perfect branch prediction mechanism.
However, even with the best branch-prediction
mechanism, combining bimod with 2lev, IPC can only
reach 86% of IPC with perfect branch prediction. There is
much room for improving micro performance by means of
improving branch prediction hit rate.

4.5 Instruction Set Characteristics

Cache behavior is very important to the micro
performance. We measured the cache performance for
each ServBench program. Separate L1 instruction cache
and data cache were simulated. The size of data cache
ranges from 2KB to 256KB, that of instruction cache
ranges from 2KB to 64KB in Figure 10 and Figure 11,
which show the miss rates for a 4-way associative data
cache and instruction cache respectively. The results are
shown in terms of groups.

It seems that the size of instruction cache has greater
impact than data cache. The instruction miss rates for
small caches sizes are much higher than the corresponding
data cache miss rates. When cache size increases from
16KB to 32KB, data cache miss rate decreases 43% in
average (26% for G1, 34% for G2, and 58% for G3),
however, instruction cache miss rate decreases 76% in
average (52% for G1, 25% for G2, and 98% for G3).
When cache size increases from 32KB to 64KB, miss
rates of data cache and instruction cache decrease 23%
and 63% respectively in average. Large instruction cache
favors ServBench.



Basic Block Size

0

2

4

6

8

10

fmt gwd gwdw pal pdup tget pcat pitem

In
st

ru
ct

io
ns

Average Size of Basic Blocks

0
1
2
3
4
5
6
7

G1 G2 G3

In
st

ru
ct

io
ns

(1) Basic-block size per program (2) Basic-block size per group
Figure 8. Size of Basic Block of ServBench programs

Branch Prediction Hit Rate

0

20

40

60

80

100

fmt pitem pal pdup pcat gwd gwdw tget

Pe
rc

en
ta

ge
%

nottaken taken bimod 2lev comb

Impact of Branch Prediction on IPC

0

0. 5

1

1. 5

2

2. 5

f mt gwd gwdw pal pdup t get pcat

IP
C

not t aken t aken per f ect bi mod 2l ev comb

(1) Branch-prediction Hit Rate (2) Impact of Branch Prediction on IPC
Figure 9. Impact of Branch Prediction

G1 Miss Rate

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

2 4 8 16 32 64 128 256

P
er

ce
nt

ag
e

% fmt

pitem

G2 Miss Rate

0

1

2

3

4

5

6

7

8

9

2 4 8 16 32 64 128 256

P
er

ce
nt

ag
e

% pal

pdup

pcat

G3 Miss Rate

0

1

2

3

4

5

6

7

2 4 8 16 32 64 128 256

Pe
rc

en
ta

ge
%

gwd

gwdw

tget

Figure 10. L1 Data Cache Miss Rate as a function of cache size

G1 Miss Rate

0

2

4

6

8

10

12

14

16

2 4 8 16 32 64

P
er

ce
nt

ag
e

%

fmt

pitem

G2 Miss Rate

0

2

4

6

8

10

12

14

16

2 4 8 16 32 64

P
er

ce
nt

ag
e

%

pal

pdup

pcat

G3 Miss Rate

0

5

10

15

20

25

30

2 4 8 16 32 64

P
er

ce
nt

ag
e

%

gwd

gwdw

tget

Figure 11. L1 Instruction Cache Miss Rate as a function of cache size



Figure 12 compares the ServBench, SPECint, and the
three groups of benchmark programs. We need at least
16KB instruction cache to obtain the miss rate under 2%
and 32KB to lower the miss rate to 1%. Although the
kernels of ServBench programs are small, there are a lot
of standard library functions called by the kernels which
makes the instruction cache miss rate higher than expected.
Compared to SPECint, only G2 programs, which have the
smallest kernel, have lower miss rate.

Compared to instruction cache behavior, data cache
performance of ServBench is more similar to that of
SPECint. The data cache miss rates for ServBench are
roughly half that of SPECint.

4.6 Instruction Set Characteristics

It seems that L1 instruction cache has greater impact
on the micro performance. From cache performance
results we observe larger instruction cache favors
ServBench. We obtain memory access behavior measured
by memory accesses per instruction (MAPI), as shown in
Figure 13.

Figure 13 shows the memory access behaviors of
benchmarks and Apache. We define memory access per
instruction (MAPI) as the ratio of number of memory
references for data to the number instructions executed in
a run. MAPI represents the frequency of memory accesses
in terms of instruction execution. ServBench has a similar
MAPI as SPECint with a variance of less than 3%.

Memory Access Behaviors

0

10

20

30

40

50

G1 G2 G3 ServBench SPECint

M
A

PI
(%

)

Figure 13. Memory Access Behaviors

Based on the above results and observations, it is
possible to use asymmetric L1 caches to improve the
micro performance. Most of present processors have
symmetric L1 caches. For example, the mainstream
microprocessor, Pentium II processor, has symmetric L1
instruction cache and data cache, both of which have
16KB. However, asymmetric L1 caches are more suitable
to improve the performance. Figure 14 depicts the
different impacts of L1 instruction cache and data cache
on IPC. Increasing the size of L1 instruction cache

contributes 60% performance improvement when the size
ranges from 8KB to 128KB.

Different Impacts of L1 Instruction Cache and
Data Cache

0

0.5

1

1.5

2

8k 16k 32k 64k 128k 256k

IP
C

DCache
ICache

Figure 14. Different Impacts of L1 Caches on IPC

Based on the above observations, when we combine
the results of Table 2 and Table 3 with those in Figure 2,
we propose that these micro kernels be put in a part of the
instruction cache which is not replaced to make room for
other instructions.

5. Conclusions

This paper has presented a micro-benchmark,
ServBench, for use in benchmarking the micro
performance of Web servers. All the benchmark programs
are taken from the implementation of the most commonly
used Apache Web server by measuring and profiling the
server with realistic workloads. We do not consider
network and disk I/O functions for the reason that there
has already been extensive research in decreasing and
optimizing the network and I/O latency. All the dataset for
the benchmark are obtained from the realistic workloads.
Then we port the micro-benchmark and Apache Web
server to SimpleScalar simulation environment. We obtain
execution time, branch prediction and cache miss results
for the micro-benchmark as a function of various
architecture parameters.

The average code size of ServBench is an order of
magnitude smaller than SPECint. Both have similar
instruction set characteristics. ServBench has smaller
basic-block sizes and nearly half of the branches are taken
and half not taken. This fact makes better branch
predication mechanism and lower miss rate very
important to the performance.

By comparing ServBench and SPECint, we observe
that L1 instruction cache plays a more important role than
data cache in improving micro performance. We prove
this observation by porting and running Apache in
SimpleScalar simulation environment. We find that
instructions executed per cycle are increased by 60%
when the size of L1 instruction cache increases from 8KB
to 128KB. Asymmetric L1 caches help to improve micro
performance greatly. We are able to achieve higher IPC
by using asymmetric L1 cache and enlarging the length of



instruction fetch queue and adding more ALUs. However,
4 ALUs and an instruction fetch queue of length 8 are
enough to enhance the micro performance.

References

[1] M. Almeida, V. Almeida, D.J. Yates, Measuring the
Behavior of A World-Wide-Web Server, 7th IFIP Conference on
High Performance networking (HPN), White Plains, NY, Apr.
1997
[2] Apache, http://www.apache.org/
[3] M.F Arlitt, C.L. Williamson. Web Server Workload
Chracterization: The Search for Invariants, Proceeding of the
ACM SIGMETRICS Conference on the Measurement and
Modeling of Computer Systems, pages 126-137, 1996
[4] G. Banga, P. Druschel, Measuring the Capacity of a Web
Server, Proceedings of the USENIX Syposium on Internet
Technologies and Systems, Monterey, Dec 1997
[5] G. Banga, P. Druschel, J. C. Mogul. Better Operating System
Features for Faster Network Servers, Proceedings of the
Workshop on Internet Server Performance, Madison, WI, June
1998
[6] G. Banga, J.C. Mogul, Scalable Kernel Performance for
Internet Servers Under Realistics Loads, Proceedings of 1998
Usenix Annual Technical Conference, New Orleeans, LA, June
1998
[7] P. Barford, M. Crovella, Generating Representative Web
Workloads for Network and Server Performance Evaluation,
Proceeding of the ACM SIGMETRICS’98 Conference,
Madison, WI, 1998
[8] D. Burger, T.M. Austin, The SimpleScalar Tool Set, Version
2.0, Technical Report, Computer Science Department,
University of Wisconsin-Madison, June 1997
[9] S. Glassman, A Caching Relay for the World Wide Web.
WWW’94 Conference Proceedings, 1994
[10] N. Gloy, C. Young, J. Chen, M. smith, An Analysis of
Dynamic Branch Prediction Schemes on System Workloads,
Proceedings of the International Symposium on Computer
Architecture, May 1996
[11] S.L. Graham, P.B. Kessler, M.K. McKusick, gprof: A Call
Graph Execution Profiler, Proceedings of the SIGPALN ’82
Symposium on Compiler Construction, SIGPLAN Notices, Vol.
17, No. 6, pp. 120-126, June 1982
[12] GNU Unix Toolset. Information and binaries available at
http://www.gnu.org/
[13] V. Holmedahl, B. Smith, and T. Yang, Cooperative caching
of dynamic content on a distributed web server, Proceedings of

7th IEEE International Symposium on High Performance
Distributed Computing (HPDC-7), Chicago, IL USA July 28-31,
1998.
[14] Y. Hu, A. Nanda, Q. Yang, Measurement, Analysis and
Performance Improvement of the Apache Web Server, the 18th
IEEE International Performance, Computing and
Communications Conference (IPCCC'99), Phoenix/Scottsdale,
Arizona, February 1999
[15] C. Huitema, Network vs. Server Issues in End-to-end
Performance, Keynote Speech, Performance and Architecture on
Web Servers (PAWS), June 2000
[16] R. Iyer, Exploring the Cache Design Space for Web Servers,
Proceedings of the 15th International Parallel and Distributed
Processing Symposium (IPDPS'00), San Francisco, CA , April
2000
[17] S. Manley, M. Seltzer, M. Courage. A Self-Scaling and
Self-Configuring Benchmark for Web Servers. Proceeding of the
ACM SIGMETRICS’98 Conference, Madison, WI, 1998
[18] D. Mosberger, T. Jin, httperf---A Tool for Measuring Web
Server Performance, Workshop on Internet Server Performance
(WISP98), Madison, Wisconsin, June 23, 1998
[19] E. Nahum, T. Barailai, D. Kandlur, Performance Issues in
WWW Servers, Proceedings of the international conference on
Measurement and modeling of computer systems, 1999
[20] NetPerf, http://www.netperf.org/
[21] V. Pai, P. Druschel, W. Zwaenepoel, Flash: An Efficient
and Portable Web Server, Proceedings of the USENIX 1999
Annual Technical Conference, Monterey, CA, June 1999
[22] V. Pai, P. Druschel, W. Zwaenepoel, IO-Lite: A Unified
I/O Buffering and Caching System, ACM Transactions on
Computer Systems, Vol. 18, No. 1, pp.37-66, February 2000
[23] R. Radhakrishnan, L.K. John, A Performance Study of
Modern Web Applications, Euro-Par 1999, Lecture Notes in
Computer Science, Springer, pages. 239-247, 1999
[24] SPECWeb99 Benchmark, http://www.spec.org/osg/web99
[25] Standard Performance Evaluation Corporation, SPEC
CPU95 Version 1.10, August 21, 1995
[26] G. Trent, M. Sake, WebStone: the First Generation in HTTP
Server Benchmarking, White Paper, Silicon Graphics, Feb 1995
[27] WebBench, http://www.webbench.com/, Ziff Davis, Inc.
March 2000
[28] D.J. Yates, V. Almeida, J.M. Almeida, On the Interaction
Between an OS and Web Server, Boston University Computer
Science Department, Boston Univ., MA, Tech Report CS 97-012,
July 1997


